5. Functional Equations

Notations: \mathbb{Z} denotes integers; \mathbb{Z}^+ or \mathbb{N} denotes positive integers; \mathbb{N}_0 denotes nonnegative integers; \mathbb{Q} denotes rational numbers; \mathbb{R} denotes real numbers; \mathbb{R}^+ denotes positive real numbers; \mathbb{C} denotes complex numbers.

In simple cases, a functional equation can be solved by introducing some substitutions to yield more informations or additional equations.

Example. (1) Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$x^{2}f(x) + f(1-x) = 2x - x^{4}$$

for all $x \in \mathbb{R}$.

Solution. Replacing x by 1 - x, we have $(1 - x)^2 f(1 - x) + f(x) = 2(1 - x) - (1 - x)^4$. Since $f(1 - x) = 2x - x^4 - x^2 f(x)$ by the given equation, we have $(1 - x)^2(2x - x^4 - x^2 f(x)) + f(x) = 2(1 - x) - (1 - x)^4$. Solving for f(x), we have

$$f(x) = \frac{2(1-x) - (1-x)^4 - (1-x)^2(2x-x^4)}{1-x^2(1-x)^2} = 1-x^2.$$

Check: For $f(x) = 1-x^2$, $x^2 f(x) + f(1-x) = x^2(1-x^2) + (1-(1-x)^2) = 2x - x^4.$

For certain type of functional equations, a standard approach to solving the problem is to determine some special values (such as f(0) or f(1)), then inductively determine f(n) for $n \in \mathbb{N}_0$, follow by reciprocal values $f(\frac{1}{n})$ and use density to find all $f(x), x \in \mathbb{R}$. The following are examples of such approach.

Example. (2) Find all functions $f : \mathbb{Q} \to \mathbb{Q}$ such that

$$f(x + y) = f(x) + f(y)$$
 (Cauchy Equation)

for all $x, y \in \mathbb{Q}$.

Solution. Step 1 Taking x = 0 = y, we get $f(0) = f(0) + f(0) \Rightarrow f(0) = 0$.

<u>Step 2</u> We will prove f(kx) = kf(x) for $k \in \mathbb{N}$, $x \in \mathbb{Q}$ by induction. This is true for k = 1. Assume this is true for k. Taking y = kx, we get

$$f(x + kx) = f(x) + f(kx) = f(x) + kf(x) = (k+1)f(x)$$

Step 3 Taking y = -x, we get $0 = f(0) = f(x + (-x)) = f(x) + f(-x) \Rightarrow f(-x) = -f(x)$. So f(-kx) = -f(kx) = -kf(x) for $k \in \mathbb{N}$. Therefore, f(kx) = kf(x) for $k \in \mathbb{Z}, x \in \mathbb{Q}$.

<u>Step 4</u> Taking $x = \frac{1}{k}$, we get $f(1) = f(k\frac{1}{k}) = kf(\frac{1}{k}) \Rightarrow f(\frac{1}{k}) = \frac{1}{k}f(1)$.

Step 5 For $m \in \mathbb{Z}$, $n \in \mathbb{N}$, $f(\frac{m}{n}) = mf(\frac{1}{n}) = \frac{m}{n}f(1)$. Therefore, f(x) = cx with $c(=f(1)) \in \mathbb{Q}$.

Check: For f(x) = cx with $c \in \mathbb{Q}$, f(x+y) = c(x+y) = cx+cy = f(x)+f(y).

In dealing with functions on \mathbb{R} , after finding the function on \mathbb{Q} , we can often finish the problem by using the following fact. (It follows from decimal representation of real numbers. For example, $\pi = 3.14159...$ is the limits of $3, \frac{31}{10}, \frac{314}{100}, \frac{31415}{10000}, \frac{314159}{100000}, \ldots$ and also $4, \frac{32}{10}, \frac{315}{100}, \frac{3142}{1000}, \ldots$)

Density of Rational Numbers. For every real number x, there are rational numbers p_1, p_2, \ldots increase to x and there are rational numbers q_1, q_2, \ldots decrease to x. We denote this by $p_n \nearrow x$ and $q_n \searrow x$ as $n \rightarrow +\infty$.

Example. (3) Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$ and f(x) > 0 for x > 0.

Solution. Step 1 By example 2, f(x) = xf(1) for $x \in \mathbb{Q}$.

<u>Step 2</u> If x > y, then x - y > 0. So

$$f(x) = f((x - y) + y) = f(x - y) + f(y) > f(y).$$

So, f is strictly increasing.

<u>Step 3</u> If $x \in \mathbb{R}$, then by the density of rational numbers, there are $p_n < x < q_n$ such that $p_n \nearrow x$ and $q_n \searrow x$ as $n \to +\infty$. So by step 2, $p_n f(1) = f(p_n) < f(x) < f(q_n) = q_n f(1)$. As $n \to +\infty$, $p_n f(1) \nearrow xf(1)$ and $q_n f(1) \searrow xf(1)$. So $p_n f(1)$ and $q_n f(1)$ will squeeze f(x) to xf(1). We get f(x) = xf(1) for all $x \in \mathbb{R}$. Therefore, f(x) = cx with c(= f(1)) > 0.

Check: For f(x) = cx with c > 0, f(x+y) = c(x+y) = cx+cy = f(x)+f(y)and f(x) = cx > 0 for x > 0. The concept of a fixed point is another useful idea in attacking a functional equations. Knowing all the fixed points are important in certain types of functional equations.

Definitions. *w* is a *fixed point* of a function *f* if f(w) = w. Let $f^{(1)} = f$ and $f^{(n)} = f \circ f^{(n-1)}$ for n = 2, 3, 4, ..., the function $f^{(n)}$ is called the *n*-th iterate of *f*.

Let S_n be the set of fixed points of $f^{(n)}$. Observe that if x is a fixed point of $f^{(n)}$, then f(x) is also a fixed point of $f^{(n)}$ because $f^{(n)}(f(x)) = f^{(n+1)}(x) = f(f^{(n)}(x)) = f(x)$. So f takes S_n to itself. Also f is injective on S_n because if f(a) = f(b) for $a, b \in S_n$, then $a = f^{(n)}(a) = f^{(n-1)}(f(a)) = f^{(n-1)}(f(b)) = f^{(n)}(b) = b$. This means that if S_n is a finite set, then f is a permutation of S_n .

Since g(x) = x implies $g^{(2)}(x) = g(g((x))) = g(x) = x$, so the fixed points of g are also fixed points of $g^{(2)}$. Letting g = f, $f^{(2)}$, $f^{(4)}$, $f^{(8)}$,..., respectively, we get $S_1 \subseteq S_2 \subseteq S_4 \subseteq S_8 \subseteq \cdots$.

Example. (4) Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(f(x)) = x^2 - 2$ for all $x \in \mathbb{R}$.

Solution. Assume such *f* exists. It turns out S_2 and S_4 are useful for this problem. The fixed points of $f^{(2)}$ are the roots of $x = x^2 - 2$, i.e. $S_2 = \{-1, 2\}$. The fixed points of $f^{(4)}$ are the roots of $x = x^4 - 4x^2 + 2$. i.e. $S_4 = \{-1, 2, \frac{-1 \pm \sqrt{5}}{2}\}$. Let $c = \frac{-1 + \sqrt{5}}{2}$, $d = \frac{-1 - \sqrt{5}}{2}$. Since *f* permutes S_2 and $c, d \in S_4 \setminus S_2$, f(c) = c or *d*. If f(c) = c, then $f^{(2)}(c) = c$ implies *c* is a fixed point of $f^{(2)}$, which is not true. So f(c) = d and hence f(d) = c. Then $c = f(d) = f(f(c)) = f^{(2)}(c)$, again a contradiction. So no such *f* can exist.

(5) (1983 IMO) Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that f(xf(y)) = yf(x) for all $x, y \in \mathbb{R}^+$ and as $x \to +\infty$, $f(x) \to 0$.

Solution. Step 1 Taking x = 1 = y, we get f(f(1)) = f(1). Taking x = 1, y = f(1), we get $f(f(f(1))) = f(1)^2$. Then

$$f(1)^2 = f(f(f(1))) = f(f(1)) = f(1) \Rightarrow f(1) = 1$$

since $f(1) \in \mathbb{R}^+$. So 1 is a fixed point of f.

Step 2 Taking y = x, we get f(xf(x)) = xf(x). So w = xf(x) is a fixed point of f for every $x \in \mathbb{R}^+$.

Step 3 Suppose *f* has a fixed point x > 1. By step 2, $xf(x) = x^2$ is also a fixed point, $x^2 f(x^2) = x^4$ is also a fixed point, So x^{2^n} 's are fixed points. Since $x > 1, x^{2^n} \to +\infty$, but $f(x^{2^n}) = x^{2^n} \to +\infty$, not 0. This contradicts $f(x) \to 0$ as $x \to +\infty$. So *f* does not have any fixed point x > 1.

<u>Step 4</u> Suppose f has a fixed point $x \in (0, 1)$. Then

$$1 = f(\frac{1}{x}x) = f(\frac{1}{x}f(x)) = xf(\frac{1}{x}) \Rightarrow f(\frac{1}{x}) = \frac{1}{x},$$

i.e. *f* has a fixed point $\frac{1}{x} > 1$, contradicting step 3. So *f* does not have any fixed point $x \in (0, 1)$.

Step 5 Steps 1, 3, 4 showed the only fixed point of f is 1. By step 2, we get $xf(x) = 1 \Rightarrow f(x) = \frac{1}{x}$ for all $x \in \mathbb{R}^+$.

Check: For $f(x) = \frac{1}{x}$, $f(xf(y)) = f(\frac{x}{y}) = \frac{y}{x} = yf(x)$. As $x \to +\infty$, $f(x) = \frac{1}{x} \to 0$.

(6) (1996 IMO) Find all functions $f : \mathbb{N}_0 \to \mathbb{N}_0$ such that f(m + f(n)) = f(f(m)) + f(n) for all $m, n \in \mathbb{N}_0$.

Solution. Step 1 Taking m = 0 = n, we get $f(f(0)) = f(f(0)) + f(0) \Rightarrow f(0) = 0$. Taking m = 0, we get f(f(n)) = f(n), i.e. f(n) is a fixed point of f for every $n \in \mathbb{N}_0$. Also the equation becomes f(m + f(n)) = f(m) + f(n).

Step 2 If w is a fixed point of f, then we will show kw is a fixed point of f for all $k \in \mathbb{N}_0$. The cases k = 0, 1 are known. Suppose kw is a fixed point, then f(kw + w) = f(kw + f(w)) = f(kw) + f(w) = kw + w and so (k + 1)w is also a fixed point.

<u>Step 3</u> If 0 is the only fixed point of f, then f(n) = 0 for all $n \in \mathbb{N}_0$ by step 1. Obviously, the zero function is a solution.

Otherwise, *f* has a least fixed point w > 0. We will show the only fixed points are $kw, k \in \mathbb{N}_0$. Suppose *x* is a fixed point. By the division algorithm, x = kw + r, where 0 < r < w. We have

$$x = f(x) = f(r + kw) = f(r + f(kw)) = f(r) + f(kw) = f(r) + kw,$$

So f(r) = x - kw = r. Since w is the least positive fixed point, r = 0 and x = kw.

Since f(n) is a fixed point for all $n \in \mathbb{N}_0$ by step 1, $f(n) = c_n w$ for some $c_n \in \mathbb{N}_0$. We have $c_0 = 0$.

<u>Step 4</u> For $n \in \mathbb{N}_0$, by the division algorithm, $n = kw + r, 0 \le r < w$. We have

$$f(n) = f(r + kw) = f(r + f(kw)) = f(r) + f(kw)$$

= $c_r w + kw = (c_r + k)w = (c_r + \left[\frac{n}{w}\right])w.$

Check: For each w > 0, let $c_0 = 0$ and let $c_1, \ldots, c_{w-1} \in \mathbb{N}_0$ be arbitrary. The functions $f(n) = (c_r + [\frac{n}{w}])w$, where *r* is the remainder of *n* divided by *w*, (and the zero function) are all the solutions. Write m = kw + r, n = lw + s with $0 \le r$, s < w. Then

$$f(m+f(n)) = f(r+kw+(c_s+l)w) = c_rw+kw+c_sw+lw = f(f(m))+f(n).$$

The above examples showed traditional or systematical ways of solving functional equations. The following examples show some other approaches to deal with these equations.

Example. (7) Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that f(f(m) + f(n)) = m + n for all $m, n \in \mathbb{N}$.

Solution. Clearly, the identity function f(x) = x is a solution. We will show that is the only solution.

To show f(1) = 1, suppose f(1) = t > 1. Let s = f(t - 1) > 0. Observe that if f(m) = n, then f(2n) = f(f(m) + f(m)) = 2m. So f(2t) = 2 and f(2s) = 2t - 2. Then $2s + 2t = f(f(2s) + f(2t)) = f(2t) = 2 \Rightarrow t < 1$, a contradiction. Therefore, f(1) = 1.

Inductively, suppose f(n) = n. Then f(n + 1) = f(f(n) + f(1)) = n + 1. Therefore, f(n) = n for all $n \in \mathbb{N}$ by mathematical induction.

(8) (1987 IMO) Prove that there is no function $f : \mathbb{N}_0 \to \mathbb{N}_0$ such that f(f(n)) = n + 1987.

Solution. Suppose there is such a function f. Then f is injective, i.e. $f(a) = f(b) \Rightarrow a + 1987 = f(f(a)) = f(f(b)) = b + 1987 \Rightarrow a = b$.

Suppose f(n) misses exactly k distinct values c_1, \ldots, c_k in \mathbb{N}_0 , i.e. $f(n) \neq c_1, \ldots, c_k$ for all $n \in \mathbb{N}_0$. Then f(f(n)) misses the 2k distinct values c_1, \ldots, c_k and $f(c_1), \ldots, f(c_k)$ in \mathbb{N}_0 . (The $f(c_j)$'s are distinct because f is injective.) Now if $w \neq c_1, \ldots, c_k, f(c_1), \ldots, f(c_k)$, then there is $m \in \mathbb{N}_0$ such that f(m) = w. Since $w \neq f(c_j), m \neq c_j$, so there is $n \in \mathbb{N}_0$ such that f(n) = m, then f(f(n)) = w. This shows f(f(n)) misses only the 2k values $c_1, \ldots, c_k, f(c_1), \ldots, f(c_k)$ and no others. Since n + 1987 misses the 1987 values $0, 1, \ldots, 1986$ and $2k \neq 1987$, this is a contradiction.

(9) (1999 IMO) Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1$$

for all $x, y \in \mathbb{R}$.

Solution. Let c = f(0). Setting x = y = 0, we get f(-c) = f(c) + c - 1. So $c \neq 0$. Let A be the range of f, then for $x = f(y) \in A$, we have $c = f(0) = f(x) + x^2 + f(x) - 1$. Solving for f(x), this gives $f(x) = \frac{c+1}{2} - \frac{x^2}{2}$.

Next, if we set y = 0, we get

$$\{f(x-c) - f(x) : x \in \mathbb{R}\} = \{cx + f(c) - 1 : x \in \mathbb{R}\} = \mathbb{R}$$

because $c \neq 0$. This means $A - A = \{y_1 - y_2 : y_1, y_2 \in A\} = \mathbb{R}$.

Now for an arbitrary $x \in \mathbb{R}$, let $y_1, y_2 \in A$ be such that $y_1 - y_2 = x$. Then

$$f(x) = f(y_1 - y_2) = f(y_2) + y_1y_2 + f(y_1) - 1$$

= $\frac{c+1}{2} - \frac{y_2^2}{2} + y_1y_2 + \frac{c+1}{2} - \frac{y_1^2}{2} - 1$
= $c - \frac{(y_1 - y_2)^2}{2} = c - \frac{x^2}{2}.$

However, for $x \in A$, $f(x) = \frac{c+1}{2} - \frac{x^2}{2}$. So c = 1. Therefore, $f(x) = 1 - \frac{x^2}{2}$ for all $x \in \mathbb{R}$.

Exercises

1. Find all functions $f : \mathbb{N}_0 \to \mathbb{Q}$ such that $f(1) \neq 0$ and

$$f(x + y^2) = f(x) + 2(f(y))^2$$
 for all $x, y \in \mathbb{N}_0$.

2. Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that f(1) = 2 and

$$f(xy) = f(x)f(y) - f(x+y) + 1$$
 for all $x, y \in \mathbb{Q}$

3. Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that

$$f(x)f(y) = f(x + y)$$
 for all $x, y \in \mathbb{Q}$.

- 4. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that
 - (a) f(x + y) = f(x) + f(y) + 2xy for all $x, y \in \mathbb{R}$ and (b) $\lim_{x \to 0} \frac{f(x)}{x} = 1.$

(*Hint*: For $n \in \mathbb{N}$, consider y = x, y = 2x, ..., y = (n-1)x.)

- 5. (1986 IMO) Find all functions $f : [0, \infty) \to [0, \infty)$ such that
 - (a) f(xf(y))f(y) = f(x + y) for $x, y \ge 0$ and (b) f(2) = 0 and $f(x) \ne 0$ for $0 \le x < 2$.
- 6. Suppose $f : \mathbb{R} \to \mathbb{R}^+$ is such that

$$f(\sqrt{x^2 + y^2}) = f(x)f(y)$$
 for every $x, y \in \mathbb{R}$.

Find f(x) for $x \in \mathbb{Q}$ in terms of f(1).

*7. (1990 IMO) Let \mathbb{Q}^+ be the set of positive rational numbers. Construct a function $f : \mathbb{Q}^+ \to \mathbb{Q}^+$ such that

$$f(xf(y)) = \frac{f(x)}{y}$$
 for all $x, y \in \mathbb{Q}^+$.
47

- *8. (1994 IMO) Let *S* be the set of real numbers greater than -1. Find all functions $f: S \rightarrow S$ such that
 - (a) f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all $x, y \in S$ and (b) $\frac{f(x)}{x}$ is strictly increasing for -1 < x < 0 and for 0 < x.

(*Hint*: Show f can only have a fixed point at 0.)

*9. (1992 IMO) Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x^2 + f(y)) = y + (f(x))^2 \text{ for all } x, y \in \mathbb{R}.$$

(*Hint*: Assume f(0) = 0, then show $x > 0 \Rightarrow f(x) > 0$, and f is increasing.)

*10. Find all functions $f : \mathbb{Q} \to \mathbb{Q}$ such that f(2) = 2 and

$$f\left(\frac{x+y}{x-y}\right) = \frac{f(x)+f(y)}{f(x)-f(y)} \quad \text{for } x \neq y.$$

(*Hint*: Try y = cx for different $c \in \mathbb{Q}$ and y = x - 2.)